Invited Paper: On the Cost-Optimal Parallel
Solution of the Majority Problem

Jie Wu
Center for Networked Computing, Temple University, USA

Abstract—The majority problem can be stated as follows: there
is a collection of n bank cards that belong to different bank
accounts. The only way to ‘“read” these cards is through one
or more two-input “equivalence testers”. Each tester accepts two
cards and outputs “yes” if two input cards correspond to the same
bank account or “no” if they do not. The objective of the majority
problem is to design a solution that uses the minimum number of
tests to determine if more than n/2 cards belong to the same bank
account and then find these cards. We first review two sequential
solutions, including the Boyer-Moore optimal linear solution (i.e.,
with a time complexity of O(n)). Then, we introduce an optimal
elimination solution together with a special structure to support a
cost-optimal parallel solution that solves the problem in O(logn)
using O(n/logn) processors (i.e., testers). That is, this solution
matches the optimal sequential solution with O(n) operations.

Index Terms—Cost-optimal solutions, data structure, parallel
algorithms, speedup.

I. INTRODUCTION

Data processing is increasingly important in the era of big
data. New parallel processing paradigms, such as MapReduce
[1]], can perform fast processing of data in parallel for various
problems, including word count and data sorting. However,
there are still many data processing problems that cannot easily
be mapped to the MapReduce paradigm for an efficient solu-
tion without selecting an appropriate data structure together
with a carefully-crafted algorithm.

The majority problem is such a problem that can be stated as
follows: there is a collection of n bank cards (or simply cards)
that belong to different bank accounts (or accounts). The only
way to “read” these cards is through one or more two-input
“equivalence testers” (or festers). Each tester accepts two input
cards and outputs “yes” if they correspond to the same account
or “no” if they do not. The objective of the majority problem
is to design a solution that uses the minimum number of tests
to determine if more than n/2 cards belong to the same bank
account and then find these cards.

The majority problem appears in several sources. In [2],
the problem was given as an exercise in seeking a solution
using the divide-and-conquer approach with a cost (i.e., the
number of operations) of O(nlogn). In the Boyer-Moore
solution [3]], the problem is defined as a data stream problem
that finds the majority of a sequence of elements using linear
time (i.e., O(n), the optimal sequential solution) and constant
space based on a counting method.

The work was inspired and motivated in part by the recent election process
for the house speaker of the US Congress, where the strict majority is needed
for the winner among multiple candidates.

This research was supported in part by NSF grants CNS 2214940, CPS
2128378, CNS 2107014, CNS 2150152, CNS 1824440, and CNS 1828363.

In this paper, we focus on the cost-optimal parallel solution
that matches the optimal sequential solution in terms of the
total number of operations used for the majority problem. We
first show that neither the divide-and-conquer solution nor the
Boyer-Moore solution can easily be extended for the cost-
optimal parallel solution. We then propose a linear elimination
solution and extend the solution to a cost-optimal parallel
solution using a special structure.

The remainder of the paper is organized as follows: Sec-
tion 2 reviews two known sequential solutions and proposes a
new linear sequential solution based on elimination. Section 3
presents a special structure that supports the cost-optimal par-
allel extension of the elimination solution. Section 4 concludes
the paper with two open problems.

II. SEQUENTIAL SOLUTIONS

We first discuss three sequential solutions (i.e., solutions that
uses one processor or tester). All solutions are based on the
following approach: a candidate card and its corresponding
account are first identified such that if a majority exists,
this account is the one. A false positive case will occur if
a majority does not exist. In all solutions, two phases are
applied. The candidate account (or simply candidate or seed)
is first identified in phase 1, followed by validation of the
candidate with all other cards in phase 2. Note that a linear
solution is the best possible solution, as cards can correspond
to distinct accounts; therefore, these cards need to be examined
individually at least once.

A. Divide-and-Conquer Solution

The divide-and-conquer solution recursively divides the
given sequence of cards into two equal halves: a left subse-
quence and a right subsequence. Suppose one seed [is found
in the left subsequence and another one r is found in the
right subsequence. During the conquer phase, compare ! (r)
with each element of the right (left) subsequence. A seed will
survive if it is the majority of the combined left and right
subsequences. Note that the combined subsequence may or
may not have a seed anymore. Finally, if a majority exists in
the original sequence, it must be the last top-level survivor. The
accumulative complexity is O(n) at each level. With O(logn)
levels in the recursion, the overall complexity is O(nlogn).

B. Boyer-Moore Counting Solution

The Boyer-Moore solution is based on a special counting
method with one counter and one data storage unit. Initially,

0

1 0222000001200 110
Fig. 1: The Boyer-Moore counting method.

the counter is set to zero without any card in the storage.
Cards are examined in sequence in phase 1 to identify a seed.
When a new card is examined with the counter set to zero,
the card is stored and the counter is set to 1. When a new
card is examined with the counter set to a non-zero number,
the counter is incremented by 1 if there is a match; otherwise,
the counter is decremented by 1. The final stored card after
the examination is the seed that will be compared to all other
cards once more in phase 2 to validate the seed.

Fig. 1 shows an example of card string 10222000001200110
with three distinct accounts: 0 (majority), 1, and 2. The z-
axis shows the card sequence from left to right while the
y-axis lists the value of the counter after examining each
card. The numbers associated with small dots are the stored
elements. Initially, the storage is empty (represented by 7).
The last stored card is 0, a seed, which is the majority after
the validation process with all other cards in phase 2. Suppose
the string is 121212200; the last stored card is 0, which is not
the majority after validation in phase 2. The complexity of this
solution is O(n), as both phases need a linear scan of cards.

C. Proposed Eliminating Solution

The proposed eliminating method also scans the given card
string from left to right as shown in Fig. 2. However, a
special bookkeeping process is introduced. Elements in the
original card string are pair-wise examined from left to right
using the equivalence tester. If they are the same, the pair
as a whole is “promoted” (slanted lines in Fig. 2) to the
next level; otherwise, the pair is considered “eliminated”
(horizontal lines). When n is odd, the last card at each level
is not paired with any other, and hence, it has “survived”.
This process repeats level by level until there is no further
promotion or elimination.

Fig. 2 shows the process of promotion and elimination.
For ¢ > 0, a compound element at level ¢ includes 2t basic
elements at level O that have the same account. In Fig. 2, the
y-axis shows the element size at each level. Level 1 (labelled
as 2!) in the y-axis has five compound elements (from left to
right): 2, 0, 0, 0, 1, each containing two basic elements. The
first two elements are eliminated, and the next two elements,
0 and O, are further promoted to a level 2 element 0, which
corresponds to four 0’s. The last element, 1, at level 1 has
survived. We argue that the fop-level survivor is the seed. That
is, if there is a majority, this seed is the one. The following
properties ensure the correctness and linearity of the solution.

Theorem 1: If the given set of cards has a majority account,
that account must be the top-level survivor after elimination.

20 -

10 2220 00001200110

Fig. 2: The proposed elimination method.

Proof: By the nature of the elimination process, two equal
subsets of cards that correspond to two different accounts are
eliminated. Therefore, at least one copy of the majority will
survive. Based on the definition, each level has at most one
survivor. Since the size of the survivor at level i is 27, the
size of the top-level survivor is greater than the size of all
other survivors combined; because 2¢ > 21 4 . 4+ 21 4
20 Therefore, the top-level survivor must be the card that
corresponds to the majority account if one exists.]

In Fig. 2, the survivors at levels 2, 1, and O are 0, 1, and
0, respectively, with double-circled survivor O at level 2 being
the top. In Fig. 3, double-circled survivor O at level 1 is the
top, as all elements at level 2 are eliminated.

Theorem 2: The elimination solution is linear, i.e., O(n).

Proof: Because the frequency of elements reduces by at least
half while cards are promoted to a higher level, the total
number of newly generated elements is less than n. Therefore,
there are no more than n card pairs to be examined. (|

Combining Theorems 1 and 2 with the linear majority
validation process in phase 2, we have the following result.

Corollary: The elimination solution solves the majority prob-
lem in linear time, i.e., O(n).

ITI. PARALLEL SOLUTIONS

The divide-and-conquer solution is parallel in nature with a
run time of O(logn) using O(n) processors (i.e., testers). It
is not cost-optimal (see below), as the best known sequential
algorithm in terms of cost is O(n). In fact, there are no ob-
vious cost-optimal parallel extensions for divide-and-conquer
and Boyer-Moore solutions. The elimination solution can be
naturally parallelized, while maintaining cost-optimality.

A. Basic Metrics

The cost of a parallel algorithm is the product of its run time
and the number of processors used p. A parallel algorithm
is cost-optimal when its cost matches the run time of the
best known sequential algorithm. The speedup S offered by a
parallel algorithm is the ratio of the run time of the best known
sequential algorithm to that of the parallel one. Its efficiency
E is the ratio of the speedup to the number of processors used.
Clearly, the cost-optimal parallel algorithm has speedup p and
efficiency 1. A parallel algorithm is cost-optimal in a strong
sense if it is both cost-optimal and the fastest.

The Parallel RAM (PRAM) [4]] is a natural generalization
of the RAM (Random-Access Machine) model for sequential
algorithms. We assume the model of EREW (exclusive read

0o 0 0 0 2 2 0 01 110 2 01 20

(a) Re-sequencing step (a)

[]

o o0o0o0©O0OOT1110201 20 22

(b) Re-sequencing step (b)
Fig. 3: Re-sequencing of Fig. 2 example.

and exclusive write), which is the basic one for PRAM,
without additional assumptions on read/write.

B. Challenges

Compared to sequential solutions, the challenge of parallel
solutions lies in keeping all processors “busy” to maintain
high efficiency. In the elimination solution, only one seed is
identified after phase 1. Multiple seeds need to be quickly
identified using multiple testers before a parallel validation
can start. Parallel solutions are classified into two types: one
in which the seed can be copied and the other one in which
the seed cannot be copied.

C. Parallel Elimination Solution with Copying

The parallel elimination solution with copying uses
O(logn) time (see below). The maximum number of proces-
sors that can be deployed while keeping the efficiency E =1
to ensure a linear cost of O(n) is p = O(n/logn).

The candidate selection can easily be parallelized for the
elimination solution as we move from lower levels to higher
levels using p = O(n/logn) processors by equally dividing
elements at each level into p subsequences. The top-level
survivor can be elected among logn levels in O(log n)[ﬂ The
time complexity for this stage is O(logn).

We can emulate CREW (concurrent read and exclusive
write) using EREW with a O(log p)-round of seed replication
to generate p seeds with p < n, assuming each processor
now has a new function that copies the account of the seed
to another (new) card. In this way, seeds can be doubled
after each round. Each processor will use a distinct seed, i.e.,
different cards but the same account, to sequentially validate a
subsequence of length O(logn). Overall, the time complexity
is O(logn). We also conjecture that O(logn) is the fastest
cost-optimal algorithm.

D. Parallel Elimination Solution without Copying

We consider here a harder problem where a seed cannot
be copied. In our case, cards cannot be replicated to take the
advantage of EREW emulation of CREW. The main difficulty
lies in quickly (no longer than O(logn) time) finding p copies
of the seed; in order for p processors to perform parallel
validations later. This process is called parallel exploration.

In the ideal case, it takes log p phases to find p seeds that
correspond to the same account (if one exists), starting from
one seed, similar to the copying method. However, if the test

! Assume each tester can select the min/max address among O(log n) local
elements in O(logn). Also, a comm. step is no more than a comp. step.

10 22220 00000O0T1

Fig. 4: An example of the top-level survivor not at the top-
level of the elimination method.

is a mismatch, no new seed will be generated. The challenge is
how to “select” cards that have high probability of generating
matching results with the initial seed. The proposed approach
uses a special structure that rearranges the card sequence to
ensure a high success probability of matching quickly if the
seed is indeed the majority.
Card re-sequencing:
(a) Rearrange the sequence from the top level down to the
lowest level, and within a level, going from left to right.
(b) Move the first non-seed (compound) element of the card
sequence after step (a) to the end of the sequence.

When a compound element at a particular level is selected,
all its constituents (i.e., basic elements) at level O are selected.
Figs. 3 (a) and (b) show the new card sequences of the original
card sequence in Fig. 2 after card re-sequencing step (a)
and step (b), respectively. In Fig. 4, the new sequence after
step (a) is 2222000000101, compared to the original sequence
1022220000001. Step (b) of card re-sequencing moves com-
pound element 2 to the end to generate: 0000001012222.

The re-sequencing, i.e., address remapping, can be done in
parallel in O(logn) through two-level pipelines among inter-
and intra-level indexing using p = O(n/logn) processors,
assuming each processor has the basic counting/adding capa-
bility. The first non-seed element can be identified through
parallel exploration, also in O(logn). Details will not be
elaborated here due to the space limitation.

The parallel exploration of seeds follows the prefix of the
new card sequence, called prefix subsequence. That is, the
exploration starts from the left to the right of the new card
sequence in parallel, but in a non-overlapped fashion.

Theorem 3: In the new card sequence, the majority has at
least half in any prefix subsequence.

The proof of Theorem 3 is shown in the appendix. Based
on Theorem 3, the seed always maintains the majority in any
prefix subsequence if it is indeed the majority. That is, less than
half of the testers will generate a mismatch with the seed. After
log p+ 1 rounds of parallel exploration, once p or more seeds
are identified, we can start the parallel validation process. Note
that this seed may still be invalidated later if it is not the
majority. Also, if there are fewer than p cards that match the
seed, there will be no majority, avoiding the validation phase.
Each tester needs to know its relative position with the help
of an atomic counter that issues sequence numbers to ensure
non-overlapped exploration regions among p testers.

Parallel exploration: We use existing seeds (initially, only one
seed) to perform parallel searching for new seeds in rounds.

Ql 2
00 »

10 * * ;3 04

Fig. 5: Parallel exploration of seeds.

01 % =*

11 % *

Each round will double the search space. When a majority
exists, the first element (with address 0) after re-sequencing
must match the seed; otherwise, the seed will have two more
than all others at the top level — causing a further promotion,
which is a contradiction. A mismatch with the first element
will indicate a no-majority case. For simplicity, we assume
that address O is the seed. Also, seed addresses that are based
on the atomic counter and card addresses in the new sequence
are both represented by binary numbers starting from 0.

e Round 1: seed 00 (i.e., 0) checks cards 01, 10, and 11.

e Round 2: seed 000 (same as seed 00) checks cards 100
and 110; seed 001 (same as seed 01) checks 101 and 111.

e Round 3: seed 0000 (same as seed 000 and seed 00)
checks cards 1000 and 1100; 0001 (same as seed 001
and seed 01) checks 1001 and 1101; 0010 checks 1010
and 1110; 0011 checks 1011 and 1111.

o Round i: For a seed from 0 to 2¢—1 — 1, it is represented
by an (z 4+ 1)-bit binary 00 *...*, where *, 0 or 1, is a
wild card. This seed checks cards O1*...* and 11%*...*,

In general, starting round 2, we use the first quarter (1:
00*...* seeds to check the corresponding third quarter Q3:
10*...* and fourth quarter QQ4: 11*...* as shown in Fig. 5.
Note that the second quarter QQo: 01*...* has been checked in
the previous round. Seeds in @2 (in the shaded area of Fig. 5)
are not used to ensure that all seeds examine non-overlapped
regions. Each newly detected seed will obtain its seed ID via
the atomic counter. Based on Theorem 3, the number of seeds
must have at least two first quarters of the current space so
that we can double the search space in the next round.

Parallel validation: Once p seeds are identified, validation
can easily be carried out by evenly dividing the sequence into
p = O(n/logn) subsequences of length O(logn).

Overall, the parallel elimination solution without copying
is cost-optimal that uses p = O(n/logn) processors (i.e.,
testers) and solves the majority problem in O(logn) time.

IV. CONCLUSION

The paper re-examines a classic problem that can be solved
in a cost-optimal way. The proposed elimination method
together with a special structure for parallelism is an ad-
dition to two classic sequential solutions that cannot easily
be parallelized in a cost-optimal way. The readers may find
the card reading method through equivalence testers to be
overly restrictive. This restrictive validation method may find

potential applications where privacy is a concern. Our cost-
optimal solution assumes that the atomic counter runs much
faster than the equivalence tester. One open question is the
existence of a cost-optimal O(logn)-speed parallel solution
without copying and without using an atomic counter. We
also need to validate our conjecture that the proposed parallel
solution is cost-optimal in a strong sense, i.e., it is the fastest
possible solution with a linear cost.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Comm. of the ACM, vol. 51, no. 1, pp. 107-113, 2008.

[2] J. Kleinberg and E. Tardos, Algorithm design. Pearson Education, 2006.

[3] R. S. Boyer and J. S. Moore, “Mjrty—a fast majority vote algorithm,” in
Automated Reasoning. Springer, 1991, pp. 105-117.

[4] 1. Jala, An introduction to parallel algorithms. Addison-Wesley, 1992.

APPENDIX
To Theorem 3, we first introduce two lemmas:

Lemma 3a: If a given card sequence has a majority element,
the majority element has at least half the number of elements
at each level of the elimination solution.

Proof: We prove by induction. Level O clearly holds. Assume
that the lemma holds for level ¢; pairs that are not promoted
to level 7 + 1 are pair-wise eliminated. When the number is
odd, the last element is not paired. Clearly, at least half of the
pairs promoted to level ¢ + 1 correspond to the majority. [

The next lemma shows a way of expressing a prefix
subsequence:

Lemma 3b: All elements in a prefix subsequence (after step
(a) of card re-sequencing) that contains elements from the top
level down to level i can be expressed by elements at level 1.

Proof: By the elimination method, all elements at level ¢ + 1
are “constructed” from level ¢ through promotions. Through
iterations, all elements above level ¢ are constructed from level
1 by treating all elements in level ¢ as basic elements. (|

Using Fig. 2 and Fig. 3 (a) as an example, Lemma 3b clearly
holds for level O for the whole sequence as a prefix subse-
quence. From the top-level to level 1, the prefix subsequence
0000220011 is instructed by all elements at level 1 in Fig. 2:
2 (for 22), 0 (for 00), O (for 00), O (for 00), and 1 (for 11).

Proof of Theorem 3: We can prove by contradiction. Suppose
the last element of a prefix subsequence is at level ¢. If the
majority account (i.e., seed) does not have half of the prefix
subsequence, based on step (b) of the new sequencing, at least
one non-seed element at level 7 is removed and placed last in
the new sequence. That is, among all elements at level 7 in
the prefix subsequence, the number of non-seed elements is at
least two more than the number of seeds. On the other hand,
based on Lemmas 3a and 3b, the seed has at least half of the
elements at level 7 in the elimination method. Among elements
at level 7 that are not selected in the prefix subsequence,
seeds will have at least two more elements than non-seeds.
In this case, at least two seeds will be adjacent — those will
be promoted to a higher level. This promoted element should
appear in the prefix subsequence, which is a contradiction. []

	Introduction
	Sequential Solutions
	Divide-and-Conquer Solution
	Boyer-Moore Counting Solution
	Proposed Eliminating Solution

	Parallel Solutions
	Basic Metrics
	Challenges
	Parallel Elimination Solution with Copying
	Parallel Elimination Solution without Copying

	Conclusion
	References

